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Power in cycling O
& In cycling, the mechanical power is generated by the cyclist.
Power = Propulsive force x Speed
& The maximum power output by a cyclist is dependent on the duration.
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Chronicle of cycling O

Germany France Britain Britain Britain
First bicycle Pedals Big front wheel Gear & chain John Boyd Dunlop
“Hobby horse” “Boneshaker” “Penny farthing” “Safety bicycle” Pneumatic tyre
1817 1863 1880 1885 1888 /\/
~1978 ~1984 2022-10-08
Skinsuit Aero-helmet
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56.792 kmh 15.776 m/s



Early aero development mirrored passenger
car development in earlier 1900s

Airship
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Aero-related improvements in 1900s db

1913, world record, 5km in 5’39”, 1933, hour record for “special bikes with device
53.1 km/h to reduce air resistance”: 48.604 km/h
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Due to their huge aerodynamic benefits, in 1914, the UCI banned aerodynamic devices in
normal cycling races.

Hadland, T., & Lessing, H. E. (2014). Bicycle design: An illustrated history. MIT Press. 7
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Wer balance in cycling O

Power for acceleration (

&

Athlete power output Power for losses

Power for potential
energy




The importance of aerodynamics

. Graeme Obree
Men's UCI hour record progression (1993, 51.596 km)
60 / Record later
1st hour record: cancelled by UCI
Henri Desgrange N
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track-legal bicycles —
for the hour record. Latest official hour record:
35 | Filippo Ganna
/ (2022, 56.792 km)
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Reducing the aerodynamic drag will lead to huge benefits.




The importance of aerodynamics

Filippo Ganna (56.792 km)T&
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Chris Boardman (56.375 km)
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- The importance of aerodynamics
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The aerodynamic drag is increasingly important at higher speeds.

Percentage of aerodynamic resistance (%)



The importance of aerodynamics O

2022 UCI Track Cycling World Championships

& Aerodynamics provide marginal gains ~ Women’s team sprint (750 m)
L s 1 2 3 4
* The gold and the bronze are within milliseconds. PP
« Winning margin is usually within 2% of the racing time. (I —

46.59
. 0.664” "
& Importance of aerodynamics Loy ! 0.0290)

« Aerodynamic drag: over 90% of total power consumption at high speed;
» Under constant power assumption, every 3% drag reduction = 1% time saving.

12



Basic aerodynamics

£ What is aerodynamics?
£ Important physical properties



What is aerodynamics?

& Concerns motion of fluids and their resultant
forces + moments

& Subject to the fundamental laws of physics:
» Newton’s laws of motion;
» Laws of thermodynamic;
» Conservation of mass/momentum/energy.

& Formula for the aerodynamic drag:

D: aerodynamic drag (N)

D= lpvz CpA p: air c.iensity (kg/m3)
2 v: cycling speed (m/s)
Cp: drag coefficient (1)
' Drag, D o 2
ycling speed. » :@ - A: frontal area (m*)
aVAs

Mean velocity field around dual cyclists 14



‘I'I'g elocity (m/s) O

& Velocity is the rate of change of the position of an object.

& Velocity is a vector quantity whose:
* magnitude is the speed;
» direction is the direction of motion.

#& Field representation:
« Steady flows: v = v(x, y, 2)
« Unsteady flows: v = v(x,y,z,t)
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Streamline sllustration Unsteady velocity field 15



Pressure

& Pressure is the normal force exerted by a fluid per
unit area.

& Unit: newtons per square meter (N /m?)
« Pascal (Pa): 1 Pa = 1 N/m?;
« Standard atmosphere (atm): 1 atm = 101,325 Pa;

& Terms:

« Static pressure is the pressure exerted by a fluid when it is at
rest;

« Dynamic pressure describes the kinetic energy per unit
volume of a fluid particle;

1 5
e Epv2 (p: density, v: flow speed)

 Total pressure = static pressure + dynamic pressure.

Red: high pressure region
Blue: low pressure region

16
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Density O

& Density is the mass per unit volume in kilograms per cubic meter (kg/m?)
& Air density is affected by altitude, pressure and temperature.

Density vs. Altitude and famous velodromes around the world

1.3

Hong Kong (China), ~0 m

1.2
\E‘Dl i [ Cali (Colombia), ~998 m
a8
3
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£

0ol La Paz (Bolivia), ~3340 m
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Composition of aerodynamic drag (N) O

N

-

& Aerodynamic drag decomposition of # Skinsuit design target:

a track cyclist at 17 m/s:

Overall

30.10 N
Cyclist
83%

1.10N 29.00 N
Friction Pressure
drag drag
4% 96%

Cyclist

— Reduction on skin friction drag has a
minor effect;

Pressure — Different fabric pattern will affect the
Normal force flow separation location and therefore,
the pressure distribution on the cyclist.

5.00 N
Pressure
drag
79%

Red: high pressure region
Blue: low pressure region .8

Bike



Methods in cycling aerodynamics

& Testing in sports wind tunnels
& Simulation on high-performance computers



I

_ Research methods O

W

Wind tunnel testing Numerical simulation

Aero sports wind tunnel with Computational fluid dynamics (CFD)
various measurement systems simulation on supercomputers

20



3D printed mannequin
(Wind tunnel testing)

Development of a cycling mannequin

3D model building
(Numerical simulation)

21



Experimental facilities

& Aero sports low-noise wind tunnel
& Aerodynamic bike test platform

Test section

* Test section (L * W * H):
— 14mx*25m=x* 2m
» High-quality flow
— Flow uniformity: < 0.5%
— Flow angularity: < 0.5°
— Turbulence intensity: < 0.12%

22



)
Wind tunnel tests on cyclists dﬁ

& Methodology

 Posture improvement : real track/road cyclist
« Equipment optimization: full-scale dummy cyclist, or static mannequin

Real cyclist Cycling mannequin

23



Measurement technology

Wake velocity measurements by a Flow field measurements by
multi-hole probe

Full-scale mannequin - Customized skin suit Cobra probe

particle image velocimetry (PIV)
|

lB
|

Track bike  Testrig (underneath floor) — Aerodynamic fairing

Right A Right B

Z -axis plane& >

Y -axis
X-axis \

Yaw J
Pitch

Left A Left B
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Flow visualisation

& Surface oil flow visualisation on a full-scale mannequin

Side view of the mannequin Close view of the left arm

[}



Flow visualisation

Top view of the mannequin . "
Rear view of the left arm

206
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-

ingle cyclist-bicycle CFD

 Flow topology on the surface of the cyclist’s body at 18 m/s.

« Unsteady flow structures

2



Single cyclist-bicycle CFD

Postures

Slice velocity Slice velocity

Drag force of whole model,
bicycle model and cyclist model

28



Effect of crank angle d%

& Effect of pedaling positions on the aerodynamic drag at 18 m/s.
— The drag force experienced by the cyclist model is much higher than the bicycle part.
— Minimum drag occurs around a horizontal crank position.

i Total
Bike

! N_;_\C:_. )
30 |
M o degree i

20

50

Drag force (N)

10

1 1 1 .
0 100 200 300
Padel angle (degree) 144 degree
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insight from the CFD model ’6

Notation:
Power in Watt
Power component

Percentage

17.61 _
Handlebar A0\ = —— iiey
3.1%

-

Translational
0.7%



The roles of aerodynamics

& Athlete posture optimization
& Equipment design & optimization
£ Racing strategy



-ﬂete posture optimization




N
Athlete posture optimization %

& Target: to achieve an optimum between low aerodynamic drag and high-
power output capability with low physiological stress.

& Key procedures:
- Investigate the sensitivity of drag on various posture parameters;
 Test and refine the posture under high-power conditions;

& Tools:

 Video-based cyclist posture acquisition method (for posture parameters);
« Simultaneous measurements for cross-correlation.



Drag-posture relation
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-ipment design & optimization




- Low-drag skinsuit design

3D reconstruction High-fidelity numerical simulation

;

Wind tunnel test Body fit

, Optimized stretch

Design criteria




Effect of fabric

Right B

Left B
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Effect of longitudinal groove fabric

Baseline
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Streamwise velocity field
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Helmet performance analysis a%

Ordinary helmet Aero. helmet

e

£ Difference in C4A: ~3.4%

# The difference is equivalent to:
— 1.1% speed increment,
— or 0.12 s time saving in a flying 200 m time trial (Ref: 11.00 s).

39



Effect of head angle (

Head up Head down

Helmet with a
round tail

Helmet with a
sharp tail

40



Wheel design and performance

& Aerodynamics of bicycle wheel
« ~8% of the total power consumption

« Manoeuvrability: side force, yaw moment

& Influential parameters

e Rotational motion
e Freestream air flow

 Crosswind, or yaw angle

* Wheel geometry Freestream

velocity U

5-spoke wheel

Yi, W., Bertin, C., Zhou, P., Mao, J., Zhong, S., Zhang, X., & So, R. (2022). Aerodynamics of isolated cycling wheels using wind
tunnel tests and computational fluid dynamics., Journal of Wind Engineering & Industrial Aerodynamics, 228, 105085.

41



iffect of the yaw angle
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Motivation O

& Drafting manoeuvre was widely adapted by cyclist both in indoor and
outdoor races.
» The drag of the trailing cyclist can be reduced.
& The benefit of drafting varies at different trailing positions.
 Can be be investigated through CFD.

#& The results can be used for:
1. Choosing the optimum position for drafting for energy saving.

2. Constructing the optimum trajectory for overtaking. (target??éﬁir;%rizglsi’fi;ation)

N —

1
....................................... Y . R
I 1

Separation distance o1 -

(Bike lengths) 145 3 Lateral

Lateral displacement displacement i

(Bike lengths) © 0-94 o ™ ‘ . g
— | | Bike length

| Separationr (164 cm)

Riding speed: 63 km/h (17.5m/s) '
Front cyclist distance 44




Dual-cyclist simulation d%

& Numerical setup

S, Bike length
_____________ :_.‘3_._._._._..@ = . » (164 Cm)
g Separation distance

* Number of cells: 80 — 110 millions.
* Number of time: 8 — 9 hours with 480 processors per case (Tianhe—2)



Wn velocity field around the cyclist(s) C)%
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Discussions

& Through drafting, drag could To8-
be reduced up to 33%. o6l
 Aerodynamic drag is more % 0.4
sensitive to the lateral Soa2r

displacement than separation
distance.

» Drag reduction is negligible if

lateral displacement > 1 body
width.

Aerodynamic drag change (%)

to scale

1.5 Q
Separation distance

(bike length)

« Significant drag reduction is
achievable even for large
separation distance.

Lateral disp. (-)

0.2

0.6

0.4 0.8

—
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Summary 7

Power decomposition in cycling
1200 — — (20 m/s, 95%)

Drag-posture relation for real cyclist
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