Aerodynamics of cycling

單車空氣動力學

Xin ZHANG 張欣

Swire Professor of Aerospace Engineering Chair Professor of Mechanical Engineering The Hong Kong University of Science and Technology

December 7, 2022

Outline

- Introduction
- Mhat is aerodynamics?
- Methods and tools of cycling aerodynamics
- Roles of cycling aerodynamics
- Summary

Power in cycling

1 In cycling, the mechanical power is generated by the cyclist.

Power = Propulsive force \times Speed

* The maximum power output by a cyclist is dependent on the duration.

A 60 kg world-class athlete can sustain ~400W power output for an hour (6.6W/kg).

As a comparison, for a passenger car (BMW 320i):

- Maximum power = 137 kW
- Weight = 1530 kg
- Power-weight ratio = 90 W/kg

Chronicle of cycling

Early aero development mirrored passenger car development in earlier 1900s

Aero-related improvements in 1900s

1913, world record, 5km in 5'39", 53.1 km/h

1933, hour record for "special bikes with device to reduce air resistance": 48.604 km/h

Due to their huge aerodynamic benefits, in 1914, the UCI banned aerodynamic devices in normal cycling races.

Power balance in cycling

Graeme Obree (1993, 51.596 km) Record later cancelled by UCI

Latest official hour record: Filippo Ganna (2022, 56.792 km)

Reducing the aerodynamic drag will lead to huge benefits.

The aerodynamic drag is increasingly important at higher speeds.

2022 UCI Track Cycling World Championships

– Women's team sprint (750 m)

- Aerodynamics provide marginal gains
 - The gold and the bronze are within milliseconds.
 - Winning margin is usually within 2% of the racing time.
- 1 2 3 4 45.967" +0.664" +0.008" (0.02%)

Importance of aerodynamics

- Aerodynamic drag: over 90% of total power consumption at high speed;
- Under constant power assumption, every 3% drag reduction $\Rightarrow 1\%$ time saving.

Basic aerodynamics

- Mhat is aerodynamics?
- Important physical properties

What is aerodynamics?

- Concerns motion of fluids and their resultant forces + moments
- Subject to the fundamental laws of physics:
 - Newton's laws of motion;
 - Laws of thermodynamic;
 - Conservation of mass/momentum/energy.
- ♣ Formula for the aerodynamic drag:

$$D = \frac{1}{2}\rho v^2 C_D A$$

D: aerodynamic drag (N) ρ : air density (kg/m^3)

v: cycling speed (m/s)

 C_D : drag coefficient (1)

A: frontal area (m^2)

Mean velocity field around dual cyclists

Velocity (m/s)

- Melocity is the rate of change of the position of an object.
- Melocity is a vector quantity whose:
 - magnitude is the speed;
 - direction is the direction of motion.
- ★ Field representation:
 - Steady flows: $\vec{v} = \vec{v}(x, y, z)$
 - Unsteady flows: $\vec{v} = \vec{v}(x, y, z, t)$

Mean velocity field around a cyclist

Unsteady velocity field

Pressure

- A Pressure is the normal force exerted by a fluid per unit area.
- \mathcal{L} Unit: newtons per square meter (N/m^2)
 - Pascal (Pa): $1 Pa = 1 N/m^2$;
 - Standard atmosphere (atm): 1 atm = 101,325 Pa;

A Terms:

- Static pressure is the pressure exerted by a fluid when it is at rest;
- Dynamic pressure describes the kinetic energy per unit volume of a fluid particle;

$$p_{dynamic} = \frac{1}{2}\rho v^2$$
 (ρ : density, v : flow speed)

• Total pressure = static pressure + dynamic pressure.

Red: high pressure region Blue: low pressure region

Density

- A Density is the mass per unit volume in kilograms per cubic meter (kg/m^3)
- Air density is affected by altitude, pressure and temperature.

Density vs. Altitude and famous velodromes around the world

Composition of aerodynamic drag (N)

Aerodynamic drag decomposition of a track cyclist at 17 m/s:

Skinsuit design target:

- Reduction on skin friction drag has a minor effect;
- Different fabric pattern will affect the flow separation location and therefore, the pressure distribution on the cyclist.

Red: high pressure region Blue: low pressure region

Methods in cycling aerodynamics

- Testing in sports wind tunnels
- Simulation on high-performance computers

Research methods

Wind tunnel testing

Aero sports wind tunnel with various measurement systems

Numerical simulation

Computational fluid dynamics (CFD) simulation on supercomputers

Development of a cycling mannequin

3D printed mannequin (Wind tunnel testing)

3D model building (Numerical simulation)

Experimental facilities

- Aero sports low-noise wind tunnel
- Aerodynamic bike test platform

- Test section (L * W * H):
 - -14 m * 2.5 m * 2 m
- High-quality flow
 - Flow uniformity: $\leq 0.5\%$
 - Flow angularity: ≤ 0.5°
 - Turbulence intensity: $\leq 0.12\%$

Wind tunnel tests on cyclists

Methodology

- Posture improvement : real track/road cyclist
- Equipment optimization: full-scale dummy cyclist, or static mannequin

Real cyclist

Cycling mannequin

Measurement technology

Wake velocity measurements by a multi-hole probe

Flow field measurements by

Flow visualisation

Surface oil flow visualisation on a full-scale mannequin

Side view of the mannequin

Close view of the left arm

Flow visualisation

Top view of the mannequin

Side view of the mannequin

Rear view of the left arm

Single cyclist-bicycle CFD

• Flow topology on the surface of the cyclist's body at 18 m/s.

• Unsteady flow structures

Single cyclist-bicycle CFD

Postures

Surface pressure

Surface wall shear stress (WSS)

Slice velocity

Slice velocity

Drag force of whole model, bicycle model and cyclist model

Effect of crank angle

- \clubsuit Effect of pedaling positions on the aerodynamic drag at 18 m/s.
 - The drag force experienced by the cyclist model is much higher than the bicycle part.
 - Minimum drag occurs around a horizontal crank position.

More insight from the CFD model

The roles of aerodynamics

- Athlete posture optimization
- Equipment design & optimization
- Racing strategy

Athlete posture optimization

* Target: to achieve an optimum between low aerodynamic drag and highpower output capability with low physiological stress.

Key procedures:

- Investigate the sensitivity of drag on various posture parameters;
- Test and refine the posture under high-power conditions;

***** Tools:

- Video-based cyclist posture acquisition method (for posture parameters);
- Simultaneous measurements for cross-correlation.

Drag-posture relation

Low-drag skinsuit design

3D reconstruction

Design criteria

High-fidelity numerical simulation

Fabric selection

Effect of fabric

Effect of longitudinal groove fabric

0.3
0.15
0.15
0.8
0.6
0.4
0.2
0.2
0.5
Streamwise velocity field

Helmet performance analysis

Ordinary helmet

Aero. helmet

- ♣ Difference in C_dA : ~3.4%
- * The difference is equivalent to:
 - 1.1% speed increment,
 - or 0.12 s time saving in a flying 200 m time trial (Ref: 11.00 s).

Effect of head angle

Helmet with a round tail

Authors Spore Engineering

Ferformance Spore Engineering

Head up

Head down

Helmet with a sharp tail

Wheel design and performance

Aerodynamics of bicycle wheel

- ~8% of the total power consumption
- Manoeuvrability: side force, yaw moment

Influential parameters

- Rotational motion
- Freestream air flow
- Crosswind, or yaw angle
- Wheel geometry

Disc wheel

5-spoke wheel

Yi, W., Bertin, C., Zhou, P., Mao, J., Zhong, S., Zhang, X., & So, R. (2022). Aerodynamics of isolated cycling wheels using wind tunnel tests and computational fluid dynamics., Journal of Wind Engineering & Industrial Aerodynamics, 228, 105085.

Effect of the yaw angle

20 m/s at 0 $^{\circ}$ and 15 $^{\circ}$ yaw angle

5-spoke wheel top view

Disc wheel top view

Motivation

- A Drafting manoeuvre was widely adapted by cyclist both in indoor and outdoor races.
 - The drag of the trailing cyclist can be reduced.
- * The benefit of drafting varies at different trailing positions.
 - Can be be investigated through CFD.
- * The results can be used for:
 - 1. Choosing the **optimum position** for drafting for energy saving.
 - 2. Constructing the **optimum trajectory for overtaking.**Trailing cyclist (target of this investigation)

Parameters	Min	Max		(or or time investigation,
Separation distance (Bike lengths)	0.145	3	Lateral		
Lateral displacement (Bike lengths)	0	0.94	displacement		Bike length
Riding speed: $63 km/h (17.5 m/s)$			Front cyclist	Separation distance	paration (164 cm)

Dual-cyclist simulation

Mumerical setup

- Number of cells: 80 110 millions.
- Number of time: 8 9 hours with 480 processors per case (Tianhe-2)

Mean velocity field around the cyclist(s)

Discussions

- ★ Through drafting, drag could be reduced up to 33%.
 - Aerodynamic drag is more sensitive to the lateral displacement than separation distance.
 - Drag reduction is negligible if lateral displacement > 1 body width.
 - Significant drag reduction is achievable even for large separation distance.

Summary

Power decomposition in cycling

Equipment design and evaluation

Drag-posture relation for real cyclist

Numerical simulation of the flow field

Acknowledgement

Aerodynamics Acoustics &

Noise Control **T**echnology

This work was supported by:

A. Kwok sports aerodynamics science initiative;
ITS/354/18FP: Development of key aerodynamic technologies

to enhance cycling competition performance.

The presentation was prepared with Prof. Peng Zhou and Mr. Jiaqi Mao.

